

Potentials of the TanDEM-X mission in the generation of urban DEMs

<u>Cristian Rossi</u>, Thomas Fritz, Michael Eineder – *German Aerospace Center* Stefan Gernhardt – *Munich Technical University*

TanDEM-X Meeting – June 2013

Motivations

- TanDEM-X mission offers two important pre-requisites for the exploitation of SAR in the generation of urban DEMs
 - 1) High-resolution
 - 2) Absence of temporal decorrelations (*single-pass interferometry*)

• TanDEM-X is a global mission: all the cities all over the world are mapped \rightarrow how?

TanDEM-X Interferometric Processing (ITP)

- The operational spatial resolution (12x12 m) is not sufficient for a (dense) urban mapping
- DEMs with 3 meters resolution are experimentally generated with TanDEM-X HRS data
 → suitable for urban mapping
- **Deviations** from the operational ITP algorithms may be useful for the generation of urban DEMs:
 - spectral shift filtering configuration (OFF)
 - coregistration configuration (window size/subs.)
 - interferogram generation (Nlooks / adaptive)
 - phase unwrapping (cost function, ON/OFF)
 - geocoding (layover management)

Interferogram Generation

- *Complex multilooking:* a number of *L* neighboring pixels are averaged to yield an estimate of the interferometric phase and coherence. In ITP a moving average window is set to the purpose.
- The theoretical interferogram resolution depends on the number of looks *L* used in the processing:

 $r_{az} = \frac{PBW}{PRF} \Delta g_{az} L_{az}$ > ground azimuth resolution $r_{rg} = \frac{RBW}{RSF} \Delta g_{rg} L_{rg}$ > ground range resolution

- Adaptive techniques mix *"radiometrically close"* pixels instead of all the pixels inside a window to increase the final precision → more accurate phase unwrapping → better DEM, better performances, better application results (i.e. edge detection)
 - 1. *"General Adaptive-Neighborhood Technique for Improving SAR Interferometric Coherence Estimation"*, Vasile et al, 2004.
 - 2. "NL-InSAR, Non Local Interferogram Estimation", Deladalle et al. 2011.

Phase Unwrapping Error Detection

• Radargrammetric Control Map: ITP tool for PU errors detection *

Non-Adaptively Filtered

Adaptively Filtered

Deutsches Zentrum für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

ightarrow adaptive filter recommended

* TanDEM-X Calibrated Raw DEM Generation, Rossi et al, ISPRS J, 2012

Theoretical Phase Trend

- Correct unwrapping assumed (building height < Ο HoA/2)
- In the layover area the interferometric phase Ο has a downtrend profile due to the decreasing height of the wall for increasing slant range
- In the shadow area the phase has a random Ο profile
- The DEM in the layover and shadow area Ο depends on the employed geocoding algorithm

DEM

SAR Geocoding on Buildings

• Due to the SAR side-looking geometry, layover cannot be directly solved in single-pass DEMs (=TanDEM-X)

• The geocoding algorithm "connects" the first and last unlayovered samples creating a geolocation error and a building height underestimation

SRTM (2.5 m posting – interpolated)

TanDEM-X Operational Stripmap (2.5 m posting – interpolated)

TanDEM-X Operational Spotlight (2.5 m posting)

TanDEM-X Experimental Spotlight (2.5 m posting)

LiDAR (2.5 m posting – interpolated)

Fusion of PSI and TanDEM-X : inputs

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

PSI-DEM

- 2.5m raster
- derived from 4 stacks (2 asc+2desc) ~ 120 images
- valid heights represent (mainly) the structures
- non valid heights represent the rest

- geocoded PS point cloud (*) rasterized at 2.5m with a façade detection (PCA) (maximum value), gaps filling (median), and ground removal

TanDEM-X DEM

- 2.5m raster
- derived from one single pass HRS acquisition (04.01.2012)
- HoA: 65.4 meters
- adaptively filtered to a 2.5 m resolution with the IDAN filter
- no invalid point in the DEM

TanDEM-X DEM fused with PSI DEM

Difference Analysis – (LiDAR – Fused DEM)

Difference Analysis – (LiDAR – TanDEM-X)

Visual comparison: Bundestag in the Reichstagsgebäude

Bundestag - TanDEM-X

Bundestag - Fused DEM

Bundestag - LiDAR

- The improvements in the PS cells are quantitatively demonstrated with the differences with the reference
- The large peak in the differences outside the PS cells is due to "layover height" next to every building
- Generally, the RMSE is below 8 meters

Ongoing research..

o Alternating Bistatic tomography

• Optical/radar DEM fusion

• In-processing layover detection and fringe frequency estimation

Conclusions

- TanDEM-X mission opens new perspectives in urban DEM generation from satellite's SAR interferometry
 - 1. no temporal decorrelation
 - 2. high resolution
- A global accuracy of about 8 meters was retrieved for both structures and non-structures in the DEM
- Layover creates trends in the DEM. A general roof's height underestimation is noticeable, especially in HR data. Note: cities with skylines (i.e. New York) can't be correctly mapped with single-pass data!
- PSI and experimental TanDEM-X data can be fused to obtain an accurate InSAR urban DEM
- InSAR processing tricks were suggested. For the correction of local phase unwrapping errors is of fundamental importance a fringe adaptive filter
- Current work is dedicated to in-processing solutions of layover, fusion/comparison with more optical sensors and "cheap tomography"

Thank you for your attention!

EXTRA MATERIAL

SAR Coregistration

- o ITP coregistration strategy already well optimized
- Window size: 32x32 pix Spacing 64x64 pix
- Urban Issue: coregistration mismatch due to different heights: Δp = AB-CD

Real Example

Interferometric phase

→ The layover peak is evident through all the front façade of the building

➔ How is the DEM in the layover areas?

= how does the geocoding algorithm behave?

SAR Geocoding on Buildings

• Due to the SAR side-looking geometry, layover cannot be directly solved in single-pass DEMs (=TanDEM-X)

• The geocoding algorithm "connects" the first and last unlayovered samples creating a geolocation error and a building height underestimation

Real Example

DLR

in der Helmholtz-Gemeinschaft

Operational Urban DEM Analysis: Inputs and Strategy

- Comparison strategy: extract the buildings from LiDAR and commonly segment the TanDEM-X *
- Sub-product: volume map

Operational Urban DEM Analysis: Volume Maps

- +8% buildings detected in TDM → PU errors, noise
- o TanDEM-X total volume is underestimated

Operational Urban DEM Analysis: Differences

	Difference Mean [m]	Difference STD [m]	RMSE [m]
LiDAR Segmentation	4.536	4.334	8.205
Common Segmentation	0.589	3.743	4.824

in der Helmholtz-Gemeinschaft

- "LiDAR segmentation" includes ground components due to building geolocalization errors
- "Common segmentation" provides an absolute difference below the meter
- As expected from the theoretical trends,
 TanDEM-X underestimates the building heights