Single pass bistatic interferometry for sea ice build-up around offshore structures

Oliver Lang, Jan Anderssohn, Parivash Lumsdon – Astrium GEO-Information Services

Kim Partington - Polar Imaging Ltd.

TanDEM Science Proposal: OCEA1139

Outline

- Scope of the study operational relevance
- Caspian Sea ice topograpy
- Pt. Barrow ice topography
- Conclusions and recommendations

Background and Scope

- Pilot Project with commerical background (Astrium, Polar Imaging, NCOC)
- Goal: Identify hazards for oil exploitation installations and ship traffic
- Method: Evaluation of TanDEM-X elevation models over sea ice

Source ENI: http://www.eni.com/en_IT/innovation-technology/eni-projects/kashagan/kashagan-project.shtml

All the space you need 17 October 2012

IICWG Workshop 2012, Tromso

Requirements for an operational Service

Monitoring of:

- Ridged ice as navigation constraint
- Sea ice pressure build-up on structures
- Potential grounded ice for:
 - basal scouring of buried pipelines
 - Vessel navigation hazards
 - refloated stamukha in spring

Example: Sea-ice deformation, thickness ca. 50cm

Typical mid-winter conditions:

Snow thickness	20 cm
Snow condition	All frozen
Surface air temperature	-17.4° C
Level Ice thickness	60 cm

Dual-polarimetric bistatic datasets

1	4 ascending pairs:	
	Effective baseline	166 m
	2π ambiguity	63 m
	Incidence angle	54°
	Polarisations	HH VV
alle.		1

Island D

1 3107			
*	5 descending pairs:		
	Effective baseline	24 m	
	2π ambiguity	255 m	
	Incidence angle	38°	
	Polarisations	HH VV	

- Strong az-ambiguities
- Low coherence over ice (avg. 0.4)
- ➔ Not used for analysis

- Weak az-ambiguities
- suitable coherence over ice (avg. 0.7)
- ➔ Used for DEM processing

All the space you need

Lang et al. – 4th TanDEM-X Science Team Meeting, Oberpfaffenhofen

Sea Ice Topography from TanDEM-X

TanDEM pair: 16 Jan 2012

17 October 2012

IICWG Workshop 2012, Tromso

Sea Ice Topography from TanDEM-X

Accuracy: empirical estimation

- Artificial structure well visible in DEM
- DEM profile corresponds well to structure and real heights
- STD on level ice: 1.2 m

Bistatic DEM at Island D

All the space you need

Lang et al. – 4th TanDEM-X Science Team Meeting, Operpresentation

Artifacts: Azimuth Ambiguities

Lang et al. – 4th TanDEM-X Science Team Meeting, Oberpfaffenhofen

Artifacts: over-estimation of topography features

- Significant over-estimation of DEM variations at cracks
- Origin: path delay by multiple reflection ?

All the space you need

Lang et al. – 4th TanDEM-X Science Team Meeting, Oberpfaffenhofen

Comparison: Bistatic Coherence – Ice Chart

5 Jan 2012

16 Jan 2012

27 Jan 2012 7 Feb 2012

18 Feb 2012

- Limited correlation between ice chart and bistatic Coherence
- Temporal and spatial Coherence variations interesting for ice classification
- ➔ further investigation needed

Ice chart provided by NCOC

Lang et al. – 4th TanDEM-X Science Team Meeting, Oberpfaffenhofen

Preliminary Conclusions

- Monitoring of sea-ice ice topography features from TanDEM pairs: possible but challenging
- Extension of study on 2nd test site: Pt. Barrow, Alaska: TanDEM Supersite
- → Use steep incidence angle and large baseline

TanDEM Supersite Pt. Barrow (Alaska)

Sea-Ice Topography: Pt. Barrow

Corresponding Ice Chart

Sea-Ice Topography: Pt. Barrow

Sea-Ice Topography: TanDEM Supersite Barrow Sea (AK) Relative Elevation:

Conclusion / Recommendations

- Use of incidence angles < 30°</p>
- Interferometric baselines > 300 m for detection of sub-meter vertical features

Further steps

- Cal/Val activities with Pt. Barrow results
- Usability of bistatic InSAR coherence for classification to be further investigated

Potential of bistatic ice mapping

- High operational potential after termination of Global DEM mission
- Reduction of accidents and environmental impacts
- Part of ice management plan
- 1-3 assessments per season to identify hazards

Aknowledgement: the authors thank NCOC for supporting the study

All the space you need

Lang et al. – 4^{th} TanDEM-X Science Team Meeting, Oberpfaffenhofen