

Snow Depth Extraction based on Polarimetric Phase Differences

S. Leinß, G. Parrella, I. Hajnsek

Earth Observation and Remote Sensing, Institute of Enviromental Science, ETH Zürich

Environment Canada

GAMMA REMOTE SENSING

Why Radar techniques for Snow?

- Optical methods sample only the snow surface.
- Microwaves penetrate into the snow.
- High frequency are required to avoid total penetration : 5 50 GHz (limited by atmosphere).

Typical interactions of microwave with snow :

- Total penetration (T \ll 0°C, v \ll 10 GHz).
- Total reflection at the surface ($T \ge 0$ °C).
- Volume scattering (T < 0°C, v > 5 GHz, depth > 2 m).

Interferometric applications for snow and ice:

- Multipass coherence decay: Snowfall / Melting.
- Single pass: Comparing DEMs (deep firn, glacier mass balance).
- D-InSAR questionable: deformation of freezing ground, additional scatterers, atmosphere.
- Phase differences between different polarizations. *(this talk).*

Time series of Polarimetric Phase differences ϕ_{VV} - ϕ_{HH}

Co-polar PPD ($\phi_{VV} - \phi_{HH}$) over the winter

Ground measurement vs. PPD ϕ_c

Measure snow depth in the field.
 Classification: Forest / no forest.
 Calculate PPD: φ_c = φ_{VV} - φ_{HH}
 Compare PPD with snow depth.
 Plot correlations for acquisitions.

Evolution of φ_{VV} - φ_{HH}

Acquisition date: **09 Jan 2012** Ground data: **09 & 10 Jan, 2012**

Incidence angle: 32.7° (orbit 130)

Slope: **6.0** deg / 10 cm R-square: 0.70

phase difference $\Delta \phi$

+20°

-20°

backscatter and snow tracks

Evolution of φ_{VV} - φ_{HH}

Acquisition date: **03 Jan 2012** Ground data: **09 & 10 Jan, 2012**

Incidence angle: 39.7° (orbit 39)

Slope: **7.4** deg / 10 cm R-square: 0.56

- 6 days before

higher incidence angle:steeper slope

Evolution of φ_{VV} - φ_{HH}

Acquisition date: **14 Jan 2012** Ground data: **09 & 10 Jan, 2012**

Incidence angle: 39.7° (orbit 39)

Slope: **8.6** deg / 10 cm R-square: 0.63

11 days later same incidence angle negative offest

Evolution of φ_{VV} - φ_{HH}

Acquisition date: **14 Jan 2012** Ground data: **09 & 10 Jan, 2012**

Incidence angle: 41.5° (orbit 32)

Slope: **10.2** deg / 10 cm R-square: 0.65

same date (11 hours before)
higher incidence angle

-> steeper slope

 $\phi_{
m VV}-\phi_{
m HH}$ (deg)

Evolution of φ_{VV} - φ_{HH}

Acquisition date: **25 Jan 2012** Ground data: **23 & 24 Jan, 2012**

Incidence angle: 41.5° (orbit 32)

Slope: **7.7** deg / 10 cm R-square: 0.48

- 11 days later
- same incidence angle
- -> less slope + negative offset

 $\phi_{
m VV}-\phi_{
m HH}$ (deg)

Evolution of φ_{VV} - φ_{HH}

Acquisition date: **16 Feb 2012** Ground data: **22 - 26 Feb, 2012**

Incidence angle: 39.7° (orbit 39)

Slope: **2.1(?)** deg / 10 cm R-square: 0.00?

- 22 days later
- similar incidence angle
-> almost no slope

Evolution of φ_{VV} - φ_{HH}

Acquisition date: **26 March 2012** Ground data: **23 March, 2012**

Incidence angle: 32.7° (orbit 130)

Slope: **2.1** deg / 10 cm R-square: 0.34

- 40 days later -> still quite flat

How is snow depth proportional to $(\phi_{VV} - \phi_{HH})$?

Summarize observations:

- Steeper slope/higher phase diff. in early winter
- Steeper slope for higher incidence angle
- Slope decreases with time
- Fresh snow causes very high phase differences.
 -> Also observed by [Chang, 1993] at 95 GHz.

Chang, P. et al. «Polarimetric backscatter from fresh and metamorphic snowcover at millimeter wavelengths», *IEEE Transactions on Antennas and Propagation*, **, 1996**, *44*

 Oriented particles within a volume cause polarization dependent propagation speeds [Cloude, 2000] & [Parrella, 2013].

Cloude et al. «The Remote Sensing of Oriented Volume Scattering Using Polarimetric Radar Interferometry.», *Proceedings of ISAP*, Fukuoka, Japan, **2000**.

Parrella, G. "On the Interpretation of L- and P-band PolSAR Signatures of Polithermal Glaciers", *POLINSAR*, **2013**

• Recrystallization of snow changes the shape and orientation of ice grains in a snow cover driven by a vertical temperature gradient. [Riche, 2013]

Riche, F. et al. "Evolution of crystal orientation in snow during temperature gradient metamorphism", *Journal of Glaciology*, **2013**, *59*, 47-55

Why is snow depth proportional to $(\phi_{VV} - \phi_{HH})$?

Interpretation of results:

- The high vertical temperature gradient between Jan. and Feb. causes a fast recrystallization and the phase difference dissappears.
- Fresh fallen snow in december causes the phase difference which can be modeled for a horizontal-to-vertical grain size ratio of 1.3.

Summary

- Correlation has been found between phase difference ϕ_{VV} $\phi_{HH}\,$ and snow depth over open area.
- [Parrella13] provided a model based on oriented particles which can explain the observed phase differences.
- Recrystallization of ice grains (oblate -> spherical) causes the phase difference to decay.
- Detection of fresh fallen dry snow is possible and depth can be determined.

Special thanks to FMI, Enveo, Gamma Remote Sensing, EC, NASA JPL, WSL-SLF for ground campaigns. *Distributed measurements* make incomparably better validations possible than fixed stations.

Why is Snow depth proportional to $(\phi_{VV} - \phi_{HH})$?

Suggestions:

- 1. Propagation speed differs for HH and VV.
- 2. Different penetration depth for HH and VV.
- 3. Linear combination of phase-jumps at different layers.

#2 is supported by different Fresnel-coefficients at snow layers for polarizations.

Spatial comparison of snow depth along transect with PPD.

Co-polar phase difference ϕ_c follows the snow depth along the transect.

InSAR: Random Volume over Ground Model

f(z): Vertical reflectivity function =

"backscattered radiation per depth volume".

Realistic reflectivity function / modelled reflectivity function for a snow pack.

Expected coherence for homogeneous snow layer over ground:

Good sensitivity to snow volume can be archived for $K_z = -2...7 \text{ m}^{-1}$ corresponding to baselines of

$$b_{\perp}$$
 = 5... 8 km -> terraSAR-X (h = 514 km)
 b_{\perp} = 10...30 m -> airplane (h_{AGL}=2.5 km)
 b_{\perp} = 15...25 m -> airplane (h_{AGL}=1.5 km)

$$B_{\perp} = \Delta \theta \cdot R_0 = \sin \theta \cdot \frac{\kappa_z \lambda}{4\pi} \cdot R_0$$

Change detection by coherence decay:

Strong temporal decorrelation in X-band caused by Snowfall, melting or strong wind drift.

For each point the coherences of at least 8 scenes of the same testsite were averaged.

- Decay time of coherence: $t_{1/2} = 4.2$ days.
- Repeat-times of *a few days* are favourable.

Decay of coherence for X-band TSX data

calculated from each scene were averaged. The red line is a

Coherence yw at peak of coherence histogram

Acquisition j

20101105

Differential-InSAR: Local phase patterns due to freezing?

Local phase pattern correlate with freezing structures on the ground. Up/down lift by freezing/thawing cycles?