

Monitoring forest biomass with Tandem-X

Svein Solberg, Rasmus Astrup Norwegian forest and landscape institute

> 4th TanDEM-X Science Team Meeting 10-14 June 2013 German Aerospace Center (DLR)

Study design 192 plots, 7 plots within selected spruce dominated stands

Processing CoSSC -> Insar height

- > Interferogram generation
- > Removal of range and topograhy dependent phase diffs
- > Phase noise filtering
- > Phase offset and ramp removal
- > Phase unwrapping
- > Phase to height conversion and geocoding
- > Subtraction of DTM

Removing phase offset and ramp with GCPs in high coherence areas

 $\Delta \varphi = k_0 + k_1 \operatorname{RG} + \underline{k_2} \operatorname{AZ}$

Acquisition	k_0	k_1	k_2	RMSE
Ascending	-2.749480	-0.000048	-0.000013	0.9 m
Descending	1.488414	-0.000093	0.000028	2.2 m

Tandem-X DEM - LiDAR DTM = InSAR height

Each plot – nearest 10m x10m pixel

Curvilinear vs linear fit

TDX interferometry and TSX radargrammetry almost identical

TerraSAR-X radargrammetry: Biomass = 16CHM + σ + ϵ ,

Stand level: $Var(\sigma) = 23 t/ha$, RMSE = 42%

Plot level: Var(ε) = 55 t/ha, RMSE = 18%

Tandem-X interferometry: Biomass = 16CHM + σ + ε , Stand level: Var(σ) = 25 t/ha, RMSE = 38% Plot level: Var(ε) = 51 t/ha, RMSE = 19%

Detection of clear cuts, Lardal, Norway, 2000 - 201

Redusert overflatehøyde og registrerte hogster hos Fritzøe

Part of the study area (1km x 2km) with changes from February 2000 to September 2011. Negative changes in InSAR DSM from the X-band SRTM to Tandem-X (left), and the stand-wise loggings recorded by the forest owner (right).

Tropical forests, Tanzania

InSAR height and field plots

- InSAR height 0-40m above ground
- Field plots

Partly logged area

Biomass model with InSAR Amani, Tanzania

Change detection 2000 – 2011 savannah forest

Legend d_DSM_SRTM Value High : 10

l ow · -10

Clear-cuts, savannah forest

Tropical forest, Central Kalimantan, Indonesia

Detection of careful logging in Central Kalimantan, Indonesia

Change in InSAR height Fore from SRTM 2000 to Tandem-X 2011 SBK

Forest loggings recorded by SKOg+ SBK during 1999 - 2010

Red = ca 20-30 m decrease

Selective loggings are detectable

Conclusion

- > Biomass can be estimated fairly accurate
- > No tendency of saturation
- > The relationship is linear, -> biomass changes can be estimated without a DTM