Interferometric X-band SAR for monitoring of forest biomass: correction of topographic effects



Holger Lange and Svein Solberg Norwegian Forest and Landscape Institute, Ås, Norway

- 1. InSAR tree heights and local incidence angle: displacements, forshortening, layover, shadows
- 2. An explicit geometric correction for topographic distortions
- 3. Consequences for height and biomass estimates: a case study

# Impact of incidence angle: simulation of radar images





20

10

30

From: Sun et al. (2002), RSE







### Case study and procedure



- Two Tandem-X acquisitions:
  - Ascending, right-looking, 23.7.2011: «Scene 1»
  - Descending, right-looking, 1.9.2011: «Scene 82»
- Processing of InSAR DSM as in the previous talk
- Subtraction of a Lidar-based DTM to generate (interferometric) heights
- Conversion to biomass using linear model from previous talk
- Calculation of Local Incidence Angles using SarScape
- Correction and comparison
- Conclusions



















# Height differences before correction







## Height differences after correction









#### Biomass estimates from the field sites

(Biomass values in tons/ha; mean values, n=192)

|              | uncorrected | corrected | % Deviation |
|--------------|-------------|-----------|-------------|
| Scene 1      | 143.8       | 137.4     | -4.5        |
| Scene 82     | 147.0       | 139.5     | -5.1        |
| Difference   | 3.2         | 2.1       | 66.7        |
| % Difference | 2.2         | 1.5       |             |

The difference between the scenes is reduced to 2/3 through the correction



#### Biomass estimates from the whole scene



(Biomass values in tons/ha; mean values; > 10<sup>7</sup> pixels)

|              | uncorrected | corrected | % Deviation |
|--------------|-------------|-----------|-------------|
| Scene 1      | 124.3       | 107.2     | -13.8       |
| Scene 82     | 112.1       | 101.6     | -9.4        |
| Difference   | 12.2        | 5.6       | 52.0        |
| % Difference | 10.3        | 5.4       |             |

The difference between the scenes is reduced to 1/2 through the correction

# Conclusions

- Topographic correction is important in rugged terrain, less important in almost flat areas
- Leads to mostly reduced tree height estimates
- Comparison between different scenes is improved
- Biomass corrections in the 10% region for the case study
- Improvements:
  - discern between near range and far range for the global incidence angle
  - Take into account local aspect, i.e. the full 3D information
  - Use SAR DSM for calculation of LIA, not Lidar DTM

