

# Tropical Forest Remote Sensing of Structure and Biomass over Brazil with TanDEM-X



Robert Treuhaft<sup>1</sup>, Fabio Gonçalves<sup>2</sup>, Soren Madsen<sup>1</sup>, João Roberto dos Santos<sup>3</sup>, Michael Palace<sup>4</sup>, Michael Keller<sup>5</sup>, Scott Hensley<sup>1</sup>, Paulo Alencastro Graça<sup>6</sup> <sup>1</sup>Jet Propulsion Laboratory, California Institute of Technology <sup>2</sup>Woods Hole Research Center <sup>3</sup>Instituto Nacional de Pesquisas Espaciais <sup>4</sup>University of New Hampshire <sup>5</sup>USDA Forest Service <sup>6</sup>Instituto Nacional de Pesquisas da Amazônia

> 4th TanDEM-X Science Team Meeting DLR 12-14 June 2013

### Tropical Forest Remote Sensing of Structure and Biomass over Brazil with TanDEM-X



- Motive
- TanDEM-X InSAR, lidar, and field data in Brazil
- InSAR and lidar and the Fourier transform
- Phase and coherence and penetration of TanDEM-X and lidar
- Models
- Next

### Tropical Forest Remote Sensing of Structure and Biomass over Brazil with TanDEM-X



- Deforestation is the second largest anthropogenic contributor to atmospheric CO<sub>2</sub>
  - CO2 emissions from fossil fuel combustion, including small contributions from cement production and gas flaring, were 8.7 ±0.5 Pg C yr−1 in 2008, an increase of 2.0% on 2007, 29% on 2000 and 41% above emissions in 1990 (Le Quere 2009)
  - Our best estimate for 2008 LUC emissions is 1.2 Pg C yr-1 (fire)
- Tropical forests contain about 50% of the Earth's forested biomass, above LUC emissions were dominated by tropical deforestation
- Remote sensing of (tropical) forest structure appears to be necessary for global monitoring of forest biomass (REDD) and the global carbon cycle
- Tropical forests are the most complex remote sensing target in the solar system



# InSAR, lidar and field data at Tapajós National Forest





### InSAR TanDEM-X at Tapajós

| ! "#\$                                                                                                                                          | %&\$      | (&)\$\$*+"'\$     | , - )  | .\$&0#*-1*2'3   | 4-0*25/ 6 | \$/'\$7#      | 8 "9#\$: |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|--------|-----------------|-----------|---------------|----------|
| ; <=<==                                                                                                                                         | >?@A?@B   | #'7CD=BE@₽G; D9@  | HH     | IGFJ>AA         | BJ; B@8   | "&            | %1 K     |
| ; <@<==                                                                                                                                         | @#?AL?@L  | #'7CD=BE@A>;      | HH     | @BJ>@G          | BJA;; 7   | - :#0         | %1 K     |
| ; <=G<==                                                                                                                                        | >?@A?@B   | #'7CD=BE@FG; D9@  | HH     | IGFJ>AE;        | BJ; B@'   | "&            | %1 K     |
| ; <@ <==                                                                                                                                        | >?@A?@E   | #'7CD=BE@@L=      |        | ; BJEEG         | BJFEE '   | "&79P\$Q      | %6K      |
| ; <@ <==                                                                                                                                        | >?@A?@A   | #'7CD=BE@@L="     |        | ; BJEBE         | BJFA@'    | "&79P\$Q6-R#0 | %6K      |
| F≪=L≪==                                                                                                                                         | >?@A?@B   | #'7CD=BE@FGGD9=   | HH     | ; AJ; FF        | BJF 7     | - :#0         | %6K      |
| F<@ <=@                                                                                                                                         | >?@A?@F   | #'7CD=BL; FEBD9@  | HH     | EFJELB>         | BJGG> 8   | "&            | %6K      |
| F<@•<==                                                                                                                                         | >?@A?@@   | 0#'7CD=BE@=G@     | H. HH  | I; LJLGE        | BJ@₹= +   | - :#0         | %1K      |
| F<@•<==                                                                                                                                         | >?@A?@E   | #'7CD=BE@=G@3     | H. IHH | I; LJ; BG       | BJ@∓@8    | "&            | %1 K     |
| F<@•<==                                                                                                                                         | >?@A?@E   | #'7CD=BE@=G@0     | IHH    | IEAJEB;         | BJABG 8   | "887          | %1K      |
| F<@•<==                                                                                                                                         | >?@A?@@   | 0#'7CD=BE@=G@     | HH     | IEAJA@∙E        | BJAB@+    | - :#0         | %1 K     |
| L<=<==                                                                                                                                          | @#?G;?GF  | #'7CD=BE@@LB      |        | G>JFFEE         | BJ; @G '  | "&79P\$QS\$9# | %1K      |
| L<=<==                                                                                                                                          | @=?G; ?GF | #'7CD=BE@@LBD9=   |        | IG>JFF          | BJ;@G '   | "&79P\$Q      | %1 K     |
| L∢F≪==                                                                                                                                          | @#?AL?@F  | #'7CD=BE@@FF      | Н      | I@EJEL@         | BJG@L '   | "&79P\$Q6-R#0 | %6K      |
| L∕F<==                                                                                                                                          | @#?AL?@F  | #'7CD=BE@@₽F"     | Н      | I@€JEF>         | BJG=@'    | "&79P\$Q      | %6K      |
| L<@€<==                                                                                                                                         | @#?G; ?GL | #'7CD=BE@@F>      | . H. H | l;;J;           | BJ; == '  | "&79P\$QT"9#  | %6K      |
| L<@€<==                                                                                                                                         | @#?G; ?GL | #'7CD=BE@@F>D9@   | . Н. Н | I; ; JG; A      | BJ; B= '  | "&9P\$QT"9#   | %6K      |
| L∕E=<==                                                                                                                                         | >?@A?@L   | #'7CD=BE@@FL      | HHHH   | IFAJ@@L         | BJFFE '   | "&76-R#0      | %1 K     |
| L∕E=<==                                                                                                                                         | >;@A;@F   | #'7CD=BE@@FLD9=   | HHHH   | IFAJ@FA         | BJF;; '   | "&79P\$Q      | %1 K     |
| >∉<==                                                                                                                                           | @#?G; ?GL | #'7CD=BEL; AF     |        | I; GI@          | BJ; LE '  | "&79P\$Q      | %6K      |
| >∕E<==                                                                                                                                          | @#?G; ?GL | #'7CD=BEL; AFD9@  |        | I; GJ=A@        | BJ; EA '  | "&79P\$Q      | %6K      |
| ><@@k==                                                                                                                                         | >?@A?@A   | #'7CDE@D9R'       | HH     | → IFEJABA@      | BJFE@8    | "&            | %1 K     |
| ><@@k==                                                                                                                                         | >?@A?@E   | #'7CDE=D9R'       | HH     | → IFEJ; LL;     | BJFE; +   | -:#0          | %1 K     |
| =B<=A<==                                                                                                                                        | >?@A?@A   | #'7CD=BALG@@      | HH     | ILEJA; @        | BJFA +    | -:#0          | %1 K     |
| =@ <l<==< td=""><td>&gt;?@A?@A</td><td>#'7CDEAD9R'</td><td> HH</td><td>→ =GEJ; F@</td><td>BJLEA 8</td><td>"&amp;</td><td>%6K</td></l<==<>       | >?@A?@A   | #'7CDEAD9R'       | HH     | → =GEJ; F@      | BJLEA 8   | "&            | %6K      |
| =@ <l<==< td=""><td>&gt;?@A?@@</td><td>#'7CDEED9R'</td><td> HH</td><td></td><td>BJLE; +</td><td>-:#0</td><td>%6K</td></l<==<>                   | >?@A?@@   | #'7CDEED9R'       | HH     |                 | BJLE; +   | -:#0          | %6K      |
| =<@=<=@                                                                                                                                         | >;@A;=>   | #'7CD=B; BLA>     | HH     | @6@L=E          | BJL; +    | - :#0         | %6K      |
| =<@=<=@                                                                                                                                         | >?@A?@=   | #'7CD=B; BLA>"    | HH     | @A>JLF          | BJLGA 8   | "&            | %6K      |
| @ <b>c</b> =@c=@                                                                                                                                | >;@A;@=   | #'7CD=B; B>GL"    | HH     | @5@JGE F        | BJLA> 8   | "&            | %6K      |
| @ <b>:</b> =@:=@                                                                                                                                | >;@F;E>   | #'7CD=B; B>GL     | HH     | @SGIG@          | BJLG; +   | - :#0         | %6K      |
| @ <b>€</b> <=@                                                                                                                                  | >;@A;=>   | #'7CD=B; BLALD9=  | HH     | @ =J==;         | BJLG; +   | - :#0         |          |
| @≪@€<=@                                                                                                                                         | >?@A?@B   | #'7CD=B; BLAL"    | HH     | @GLJB>@         | BJLGG 8   | "&            | %6K      |
| E <g<=@< td=""><td>&gt;;@A;=&gt;</td><td>#'7CD=B; BLAFD9=</td><td> HH</td><td><i>@</i>6GJ; F</td><td>BJLG@+</td><td>- :#0</td><td></td></g<=@<> | >;@A;=>   | #'7CD=B; BLAFD9=  | HH     | <i>@</i> 6GJ; F | BJLG@+    | - :#0         |          |
| E <g<=@< td=""><td>&gt;;@A;@=</td><td>#'7CD=B; BLAFD9@</td><td>HH</td><td>@6@);FL</td><td>BJLGG 8</td><td>"&amp;</td><td></td></g<=@<>          | >;@A;@=   | #'7CD=B; BLAFD9@  | HH     | @6@);FL         | BJLGG 8   | "&            |          |
| E<=; <=@                                                                                                                                        | >;@A;=>   | #'7CD=B; BLA;     | HH     | @ EJ@==         | BJL; = +  | - :#0         | %6K      |
| E<=; <=@                                                                                                                                        | >;@A;@=   | #'7CD=B; BLA; D9@ | HH     | @ BJBF          | BJLGE 8   | "&            | %6K      |
| E<@F<=@                                                                                                                                         | >?@A?@@   | #'7CD=B; BLAG     | HH     | @A; JA; =       | BJ>G 8    | "&            | %6K      |
| L<=F<=@                                                                                                                                         | >?@A?@    | #'7CD=BL; @FL     | HH     | → E>JG>         | BJGF@+    | - :#0         | %6K      |
| L<=F<=@                                                                                                                                         | >?@A?@L   | #'7CD=BL;@FL"     | HH     | E>JAL           | BJGFF 8   | "&            | %6K      |

# InSAR and lidar and the Fourier Transform

• InSAR complex coherence is the Fourier transform of the radar power in the vertical direction

Compl coherence<sub>InSAR</sub>(B) = 
$$\frac{\int_{0}^{\infty} P(z) e^{j\alpha_{z}(B)z} dz}{\int_{0}^{\infty} P(z) dz}$$
  
InSAR  
Fourier poor,  
coverage rich



• Lidar complex coherence is the Fourier transform of the waveform in the vertical direction

Compl coherence<sub>lidar</sub> 
$$(\alpha_z) = \frac{\int_{0}^{\infty} W(z) e^{j\alpha_z z} dz}{\int_{0}^{\infty} W(z) dz}$$
 Lidar  
Fourier rich, coverage poor

• Use lidar complex coherence to evaluate potential of InSAR baselines



# **Fourier Transform Derivatives**

 Derivatives of γ near zero frequency give profile averaged height ('), profile standard deviation (")...

$$\lim_{\alpha_z \to 0} \frac{d\gamma(\alpha_z(B))}{d\alpha_z} = \frac{\int_{0}^{\infty} iz P(z) e^{i\alpha_z z} dz}{\int_{0}^{\infty} P(z) dz} = i \overline{z}$$

### **Biomass Estimation:**



### What Fourier Frequencies are Used?

InSAR may be Fourier poor,

But is it Fourier adequate?



Biomass=a+b\*FT( $\alpha_z$ )+c\*FT'( $\alpha_z$ )+d\*FT''( $\alpha_z$ ), Fourier freq=0.07 cyc/m, and 0.17 cyc/m Treuhaft et al. 2010 (and in prep)























1



#### TanDEM-X Phase Height and Model vs Biomass





#### TanDEM-X Coherence and Model vs Biomass





#### Next: Understand Discrepancy in TanDEM-X and SRTM Topo







- TanDEM-X structure estimation
  - Understand topo discrepancy
  - Use HH and VV to find phase of ground under canopies
  - Look at shorter baseline signatures for mean canopy height and stddev
  - Account for why TanDEM-X scatter in coherence and phase is greater than lidar
    - Scatter differences >>penetration differences
    - e.g. sidelooking range location shift
  - Phase unwrap
- TanDEM-X biomass estimation
  - Look at preferred Fourier frequencies from lidar alone for biomass est and apply to TanDEM-X short-to-long baselines
  - Compare biomass over 12 thousand .25-ha areas from TanDEM-X and lidar
- Perform fieldwork and acquire 50 more sites, also remeasure some from 2010



#### 73 m Height Amb C-band Coherence vs Biomass La Selva





### **InSAR: Two Vegetation Scatterers**



### **InSAR Phase and Coherence: Terrestrial Ecology**





Two Conclusions:The more vertically extended the vegetation $\alpha_z z_a < \alpha_z z_{tot} < \alpha_z z_b$ The Higher the phase

 $A_{tot}^2 < A_{leaf_a}^2 + A_{leaf_b}^2$  The Lower the coherence

# Many Scatterers and The Fourier Transform

The Fourier transform is the strength of the sinusoid at frequency  $\alpha_{z}$  in the profile A<sup>2</sup>(z)

$$FT(\alpha_z(B)) = \int_0^\infty A^2(z) e^{j\alpha_z z} dz$$



**Lidar** Drake et al. 2002 Fourier rich



InSAR Fourier poor



### **Program for Now**

• Look at coherences of TanDEM-X HH InSAR and lidar coherence and phase (phase height)

coherence = 
$$\frac{\int_{0}^{\infty} A^{2}(z) e^{j\alpha_{z}z} dz}{\int_{0}^{\infty} A^{2}(z) dz}$$

#### Next: Understand Differences in TanDEM-X and SRTM Topo: Residual Z-spacecraft coordinate trends?





### TanDEM-X Phase Height Reference 40 Number of 4-look-Averaged Phases 30 20 10 Bottom of Canopy? Π 0[ -2 3 0 2 1

InSAR Phase (radians)



# **Fourier and Biomass Dynamics**

InSAR is a Fourier transform

Fourier transforming lidar over its broad range of frequencies may inform InSAR global monitoring strategies

Modeling Opportunity: The "small push" response of a system in equilibrium is sinusoidal The frequency of oscillation depends on the forces that maintain equilib The size of the oscillation sheds light on the force (disturbance)

