

Analysis of TanDEM-X InSAR Data and LiDAR Data Aimed at the Characterisation of Open Forest Vertical Structure: A Case Study in Injune, Queensland (Australia)

Elsa Carla De Grandi¹² R. Lucas¹, G.F. De Grandi¹ and P. Riccardi²

¹ Institute of Geography and Earth Sciences Aberystwyth University

Aberystwyth Ceredigion, SY23 3DB ² sarmap SA
Cascine di Barico 10
6989 Purasca
Switzerland

Aim and Objective

AIM

□ Investigation of novel orbital InSAR observations and evaluation of the suitability for the quantitative characterisation of the vertical structure of sub-tropical open forests and woodlands.

OBJECTIVE

□ Characterisation of forest biomass and vertical structure by means of TanDEM-X interferometric coherence and phase information.

Poplar box (*E. populnea*)

Smoothed barked apple (Angophora leiocarpa)

Injune Vegetation

Brigalow regrowth (*Acacia harpophylla*)

Cypess pine (*C. glaucophylla*)

Silver-leaved ironbark (*E. melanaphloia*)

Sampling Strategy

SSU

PSU	Dominant Specie	\overline{x} Vegetation Height (m)	<i>x</i> FPC (%)	\overline{x} Biomass (Mg/ha)
111	CP-SLI	10.26	48.4	110.34
131	BGL	3.64	5.9	8.55
138	SLI-CP	8.22	27.9	76.27

*From a combination of LiDAR and Large Scale Photography.

131

AP (2009)

Datasets

Source	Sampling	Purpose	
TanDEM-X (2011)**	5 m (coherence and DSM)	AGB-coherence regression Vegetation height estimates	
LiDAR (2009)*	1 m	DTM and CHM for validation	
LiDAR (2002)*	1 m	AGB	
Ground Truth (2000)*	SSU level (50 x 50 m)	UTA model parameterization	

LiDAR CHM (1 m)

**InSAR processing by SARMap ©

TanDEM-X Processing

TanDEM-X DSM SE (Precision)

Modelling: A Pre-requisite for the Experimental Analysis

Fractional scattering phase center height

Fractional phase center height as a function of three different extinction factors (dB/m) and layer height (0 to 35 m).

Methods for the Experimental Analysis

Biomass-Coherence Analysis

Histograms for three AGB classes (Mg/ha)

TanDEM-X/LiDAR Canopy Height Model

- ---- TanDEM-X DSM (5 m)
- LiDAR DTM (1 m)
- ____ TanDEM-X Standard Error

TanDEM-X and LiDAR CHMs Closeness Evaluation:

One-point Statistics (Probability Density Function)

TanDEM-X and LiDAR CHMs Closeness Evaluation:

Two-point Statistics (Structure Function)

TanDEM-X and LiDAR CHMs Closeness Evaluation:

Two-point Statistics (Wavelet Flatness Factor)

TanDEM-X and LiDAR CHMs Closeness Evaluation: Profiles

Statistical Parameter	PSU 111	PSU 138
SE TDX height	3.6	3.3
LiDAR < height>	6.6	3.2
TDX <height></height>	8.1	7.8
Pearson Correlation	0.68	0.55
Wavelet Flatness (scale=0)	4.5	9.0
Wavelet Flatness =3 scale	2	16

Conclusions

- <u>Weak correlation</u> between AGB and coherence at PSU level.
- <u>Coherence is not a 1:1 function of AGB</u> being affected by other forest parameters. Coherence at X-band cannot be used to estimate AGB of an open forest.
- <u>Vegetation height estimates at 5 m spatial sampling derived from</u> the combination of TanDEM-X DSM and LiDAR DTM.
- <u>Evaluation</u> of CHMs closeness in statistical sense indicates that the distance between the two processes depends on the forest spatial distribution. This is due to different sensor's resolution and phase centers location.

Acknowledgments

I would like to thank:

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR
TanDEM-X AO VEGE0330 Team
sarmap SA
ILCP researchers

Paper subimtted at IGARSS 2013:

"ANALYSIS OF TANDEM-X INSAR DATA AIMED AT THE CHARACTERISATION OF VEGETATION VERTICAL STRUCTURE: A CASE STUDY IN INJUNE (QUEENSLAND, AUSTRALIA)"

